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Abstract – In the current study, aerial image analysis has been applied to map vegetation communities 
in a riparian wetland ecosystem, Szigetköz (Hungary). Remote sensing offers an objective and time-
effective method for the detection of detailed vegetation habitats with the use of high resolution aerial 
photos combined with ancillary botanical and silvicultural data. Three images of the same test site, 
acquired in three different years have been analysed by sample-based semi-automated image 
classification technique. Due to the heterogeneous nature of the target vegetation classes, besides 
using spectral features (e.g. vegetation indices) textural descriptors were also involved in the 
classification procedure. The most appropriate parameters have been chosen using a statistical feature 
selection method based on the Jeffries-Matusita distance. The accuracy assessment proved for each 
scene that the combined use of spectral and textural features gave the best classification results in 
comparison to the exclusive use of spectral or textural measures. The here-applied feature set can be 
applied for the analysis of similar riparian sites. 

remote sensing / high resolution imagery / riparian wetland / texture analysis 
 
Kivonat – Légifelvételek osztályozása vizes élőhelyek térképezése céljából. A tanulmány célja légi-
felvételek elemzésére szolgáló módszer kidolgozása vizes élőhelyek vegetációtérképezéséhez, melyet 
a szigetközi folyómenti mintaterületen vizsgáltunk. A hagyományos terepi felméréssel szemben a 
távérzékelés lehetővé teszi vizes élőhelyek megközelítően objektív és gyors térképezését nagy 
felbontású légifelvételek és kiegészítő botanikai és erdészeti adatok felhasználásával.  A mintavételen 
alapuló fél-automatikus képosztályozás eredményesnek bizonyult a kiválasztott három képre 
alkalmazva (adott tesztterület három időpontra). A vegetációs célosztályok heterogén természetéből 
adódik, hogy a spektrális jellemzők (vegetációs index) vizsgálata mellett texturális jellemzők 
bevonására is szükség van az osztályozási algoritmusok kialakításához. A legjelentősebb 
paramétereket a Jeffries-Matusita statisztikai kiválasztó módszer segítségével határoztuk meg. 
Megbízhatósági elemzés alapján a spektrális és texturális jellemzők együttes alkalmazása adta a 
legjobb osztályozási eredményeket a kizárólag spektrális vagy texturális paraméterek felhasználásával 
szemben. Hasonló ártéri területek növényzeti térképezéséhez a kiválasztott jellemzők alapértelmezett 
alkalmazása javasolt.  

távérzékelés / nagy felbontású felvétel / folyómenti vizes élőhely / texturális elemzés 
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1 INTRODUCTION 
 
Rapid and extensive change of ecosystems in the last 50 years induced a significant decrease in 
the variety of life forms (Millennium Ecosystem Assessment 2005). Since by the end of 2010 it 
became clear that the loss of biodiversity could not be stopped, a new strategy (EU 2020 
biodiversity strategy) has been developed, linked to the European Habitats Directive and the Birds 
Directive (Lang et al. 2013). Besides this policy framework, appropriate technology is needed for 
observation, where satellite Earth Observation (EO) emerged as a powerful monitoring device. 
Beyond satellite imagery, the use of archive aerial photography is essential, for the historical 
characterization of variability within ecosystems and hereby for the development of strategies 
related to the management of ecological integrity (Landres et al. 1999). The analysis of high 
resolution images with additional in-situ measurements can compete with traditional field 
surveying of complex vegetation communities considering cost- and time-effectiveness. The 
visually-based, solely manual interpretation of imagery is inefficient due to its high subjectivity, 
as well as due to the rapid development of digital image analysis techniques and automated 
information extraction methods which result in feasible investigation of larger areas with high 
spatial resolution. Nevertheless, the image classification techniques of high resolution images for 
vegetation habitats are not straightforward. Due to the heterogeneous nature of these communities 
at high geometric resolution, traditional pixel-based digital image classifiers do not give 
satisfactory results (Levick – Rogers 2008, Kamagata et al. 2008, Addink et al. 2007, Johansen et 
al. 2010). Therefore, the application of object-based algorithms, after appropriate segmentation 
approaches, emerged (Blaschke et al. 2011). In addition to that, numerous studies have postulated 
that a supplementary approach is needed to spectral classification regarding vegetated areas and 
forest structures from high resolution images (Lévesque – King 2003, Zhang 2001), since target 
features cannot be differentiated on the sole basis of spectral reflectance. The characterization of 
image texture became the backbone of various remote sensing related applications, e.g. the 
analysis of landscape heterogeneity, biophysical parameters, forest structural characteristics, 
prediction of species distribution and biodiversity patterns (Morgan et al. 2010). Many texture 
features can be added to a certain study, however, since classification cost increases with the 
number of features, it is reasonable to reduce this number and utilize only the necessary features 
for performing a classification (Richards − Jia 2006). In other words, finding the best suited 
characteristics is a prerequisite for an efficient classification approach, therefore, statistical feature 
separability methods have been applied aiming at emerging those parameters which have high 
significance and could be best used in the differentiation of diverse vegetation habitats (Bindel et 
al. 2011, Mahmoud et al. 2011). 

The present study aims at finding an appropriate semi-automated classification method 
with the use of texture characteristics in order to map predefined vegetation habitats based on 
high resolution aerial imagery. The analysis is based on a test site in a riparian wetland 
ecosystem (Szigetköz, Hungary) applied to three different years. Image classifications are 
carried out independently, however, their comparable use by transferring the descriptive 
measures from the recent image into another is investigated as well.  
 
 
2 STUDY SITE 
 
Wetlands in general are among the world’s most productive ecosystems and reached a critical 
vulnerable state recently, wherefore their conservation and sustainable development strategy 
has been formulated in the Ramsar Convention on Wetlands (1971). 

The Szigetköz Danubian floodplain together with the Slovakian Csallóköz is the most 
extensive riparian wetland in the Upper-Danube region, displaying a high species diversity of 
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flora and fauna (Illés − Szabados 2008). The region is part of the Fertő-Hanság National Park 
(FHNP) with 37 500 ha area, of which 9157 ha became landscape protected in 1987 and 
nowadays it is included in the list of NATURA 2000 SPA (special protected area) and IBA 
(important bird areas) (Szabó 2005). 

Due to the diversion of the Danube into a side channel in 1992, related to the construction 
of the Gabčikovo Hydroelectric Power Plant, severe changes occurred in the discharge pattern 
of the old riverbed of the Danube, with a decrease of the average discharge approximately to 
20% (Ijjas et al. 2010). It has been reported in the same study of Ijjas et al. (2010) that the 
unique diverse pattern of habitat types have been significantly affected by the changed flow 
and sediment regime, and an alteration has been detected from aquatic or aquatic-related 
species to more terrestrial ones. Medium resolution Landsat satellite image analysis showed 
negative changes of the normalized vegetation indices in short-term (1992–1993) (Smith et al. 
2000), caused by dropping groundwater levels, as were documented and modelled in the 
region (Vekerdy – Meijerink 1998). Similarly to that, changes were detected in the wetness 
values based on the Tasseled Cap transformation of Landsat, however, from 1997 a 
continuous regeneration is experienced, except for older willow species (Kristóf 2005). 

Blaschke et al. (2011) listed numerous vegetation studies, where advanced remote 
sensing techniques have been applied to the analysis of high resolution imagery (≤10 m/pixel) 
in the recent years, though, in the test site of the present research, vegetation habitat 
classifications have been mainly based on traditional field survey. Available archive aerial 
imagery has been often used as unprocessed background information for visualization 
purposes as a basic layer for vector data representation (Takács − Molnár 2009). While land 
use/land cover classification of such images has been mainly based on visual image 
interpretation (Licskó 2002), in the field of forestry Illés − Somogyi (2005) have given an 
example for the application of a supervised digital image processing algorithm for the detection 
of different species and their state of health, but they did not reach satisfactory results. 

In our research, for detailed vegetation analysis an approximately 2.5 km2 area has been 
chosen as a test site, near to the village Dunaremete (Figure 1). 
 
 
3 DATA 
 
Archive aerial photo series with high spatial resolution (≤ 5 m/pixel) are available at more 
Hungarian institutions about the chosen test site. For our experiment we used the ones 
summarized in Table 1. 

As a pre-processing phase, imagery from 2008 and 2005 has been resampled to the 
coarser geometric resolution of the image 1999 (1.25 m/pixel) in order to support comparable 
image analysis techniques for all dates, since textural parameters depend on the spatial 
resolution of the imagery. 

Any kinds of vegetation-related studies need the support of in-situ measurements as 
reference data. Therefore, botanical maps have been gathered, where the field survey was 
based on the framework of the National Biodiversity Monitoring System (Takács − Molnár 
2009) focusing on the mapping of Á-NÉR types (Á-NÉR = the Hungarian abbreviation of 
General National Habitat Classifying System) (Figure 1, Table 2). Besides the botanical view 
of habitat complexes, it was also essential to involve silvicultural databases (Figure 1, Table 2), 
in order to aid the selection of target vegetation classes. Personal field inspection of a part of 
the test site has been carried out in November, 2010. Nevertheless, it has to be mentioned, that 
the ancillary data have been acquired in different time from the image dataset, and this brings 
some additional uncertainties into the image interpretation procedure. 
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Figure 1. Test site in the Szigetköz Danubian floodplain 

Table 1. Aerial imagery 

Imagery Orthophoto 2008 Orthophoto 2005 Orthophoto 1999 

Source 
Institute of Geodesy, Cartography and 
Remote Sensing (FÖMI), Budapest 

University of West Hungary,  
Phare CBC Project, EUROSENSE* 

Scale 1 : 74 000** 1 : 30 000 1 : 30 000 
Original Ground 
Spatial Resolution 

0.5 m/pixel 0.5 m/pixel 1.25 m/pixel 

Spectral Resolution NIR, G, B RGB NIR, R, G 
Camera Type UltraCamX RC 20 Wild RC 20 
Applied Film Type  Digital, Color IR Color Color IR 
Acquisition time 06.08.2008 29.07.2005 03.08.1999 
Solar azimuth angle 125.6° 209.4° 111.6° 

 

* CBC: Cross-Border-Cooperation; EUROSENSE: http://www.eurosense.com 
** However, because of the digital camera, the given scale cannot be directly compared to the others. 

Table 2. Ancillary data 

Ancillary data  Habitat map Silvicultural map 
Thematic information Á-NÉR habitat type First type of forest stand 
Scale 1 : 12 500 1 : 10 000 
Acquisition year 2000, 2004 2003 
Acquisition time period July-October Spring-sommer-autumn 
Source Directorate of FHNP Forestry Directorate, 

Szombathely  
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4 METHODS 
 
4.1 Object-based image analysis 

Object-based image analysis (OBIA) technique, contrary to pixel based approaches, offers an 
efficient solution for high spatial resolution mapping with a potential extension for larger 
areas in a relatively rapid manner, due to the integration of spatial complexity. OBIA consists 
of (1) image segmentation: clustering of pixels into homogeneous objects, (2) classification: 
labeling of objects and (3) modeling based on the characteristics of objects (Johansen et al. 
2010b). As the first step, the segmentation approach is mainly based on the concept from 
Tobler (1970), also known as the first law of geography, saying that “everything is related to 
everything else, but near things are more related than distant things”. 

According to that, images of each year have been firstly analysed concentrating on the 
separation of`the spectrally differentiable ‘Water bodies’, like the first part of a hierarchical 
classification. In that case, after quadtree and multi-resolution segmentation approaches, the 
classification was based on vegetation indices (Table 3) and brightness values (average of the 
three original bands). In addition, manual corrections were needed, especially concerning the 
image from 2005. 

Table 3. Vegetation indices applied to images with different spectral resolutions 

Orthophoto 2008 2005 1999 

Spectral bands NIR, G, B R, G, B NIR, R, G 

Vegetation Index 
modified NDVI: 
(NIR-B)/(NIR+B) 

(G-R)/(G+R) 
(Gitelson et al. 2002) 

NDVI: 
(NIR-R)/(NIR+R) 

 

 
4.2 Target vegetation classes 

Further classes are related to vegetation habitats, where the selection of target classes was 
based on a synoptic view of the aerial photos (2008, 2005, 1999) and additional information, 
concentrating on the most occurring and characteristic vegetation patterns which can be 
“easily” identified by human eye in the visual image interpretation process. Reed (R), Hybrid 
Poplar (HP), Domestic Poplar (DP), Willow (W) and Willow & Poplar (WP) classes (Figure 2) 
have been defined as target classes for the image classification for each year, except for class 
Domestic Poplar (in the Hungarian designation “hazai nyáras”) which was only present in 
2008. It has not been intended to identify each of the occurring classes in the test site, but 
those ones which cover an area with a significant size. 
 

 

Figure 2. Target vegetation classes represented by 40 m * 40 m square samples  
(2008, PC1, GSR: 1.25 m/pixel)  

1: Reed, 2: Hybrid Poplar, 3: Domestic Poplar, 4: Willow, 5: Willow & Poplar 
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4.3 Analysis of textures 

In case of very high resolution (VHR) imagery the spectral characteristics (radiometric values 
in various bands) of a single pixel cannot describe forest stands or even an individual tree, 
therefore, information is needed on the local neighborhood of each pixel, either by the 
generalization for the stand (substand) or by the analysis of the texture of larger spatial units, 
like square-shaped windows/polygons. Local textures can be described by spatial statistical 
measures, grouped into three types, (1) first-order statistics, e. g. standard deviation, (2) 
second-order statistics based on co-occurrences and (3) semi-variances or autocorrelations 
within a pixel neighborhood (Tuominen − Pekkarinen 2005).  

 
4.3.1 The grey-level co-occurrence matrix 
Grey-level co-occurrence matrices (GLCM) belong to second-order statistics and have been 
successfully applied in numerous studies for land-cover/vegetation analysis of remotely 
sensed imagery (Berberoglu et al. 2007; Hájek 2008), showing significant improvements in 
the classification accuracies (Franklin et al. 2000; Carleer − Wolff 2006). Taking a grey-scale 
image with a given brightness value range (in our case L = 256 due to the 8 bit data), the 
GLCM is an L × L matrix, where the value for each cell is defined by the number of 
occurrences of a given grey-level-combination of 2 pixels (a pixel pair, with a defined h 
distance and θ direction which are given for a concrete matrix) divided by the total possible 
number of grey level pairs (Richards − Jia 2006). Depending on the various h and θ chosen, 
there are different GLCMs. Haralick et al. (1973) defined 14 various metrics derived from 
each matrix to use as texture measures. 

In summary, variables which have to be defined for GLCM calculations are (1) moving 
window (object) size; (2) direction of the offset (mentioned as θ before); (3) distance of the 
offset (h); (4) image channel used; (5) specific metrics as defined by Haralick et al. (1973). 
Regarding the direction of the offset, the all directional feature is often applied, meaning the 
average of all the directions (0°, 45°, 90°, 135°), especially when the observed classes are not 
directionally biased (Laliberte − Rango 2009). The distance of pixels is normally set to 1, i.e. 
for the comparison of direct neighbours (Trimble 2013).  We applied GLCM on the first 
principal component (PC1) calculated from the three bands of each aerial photo to best 
represent the texture of the photo (coefficients for PC1 regarding 2008: 0.659, 0.485, 0.575; 
regarding 2005: 0.579, 0.590, 0.563; regarding 1999: 0.685, 0.488, 0.541). 

Similar to the case described above regarding the image analysis of VHR imagery, by the 
application of object-based image analysis technique the core of the analysis procedure is not 
any more the pixel itself, but “an extended neighborhood”, the image segments or objects, 
which are typically the sets of spectrally similar pixels coming from a multi-resolution 
segmentation approach (Benz et al. 2004). However, due to the fact that target vegetation 
communities are spectrally heterogeneous, another type of segmentation (“chessboard”) is 
privileged in our investigations, where the image scene is divided into unique-sized objects 
(squares) with a predefined size. This means actually that the minimum mapping unit of the 
classification has changed from 1.25 m/pixel to 20 m/pixel, but with additional information 
on the texture. 
 
4.3.2 The semi-variogram 
Moving window sizes or in our example, the square image object sizes are critical for any 
texture analyses. The internal spatial variability of the target class(es) will determine the 
ground resolution element (here the grid size), before unnecessary intra-parcel variability 
would be detected (Curran 1988). In this regard, semi-variogram analysis has been applied in 
numerous studies to choose the most appropriate window size for GLCM computation (Carr − 
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Miranda 1998; Treitz − Howarth 2000; Tsai − Chou 2006; Szantoi et al. 2013). The 
variogram (or semi-variogram) is frequently used as a measure of spatial continuity, as well as 
a multiscale directional measure of surface roughness (Trevisani et al. 2009). The 
mathematical structure model of the empirical semi-variogram is defined as (Curran 1988): 
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where  x  is a geographic point,  z(x)  is its attribute value (in our case, the radiometric value, 
DN) and  m  is the number of point pairs separated by vector  h. For the graphs of the semi-
variograms γ(h) is visualized for increasing  h. The larger γ(h) is, the less similar are the pixels 
divided by a given h vector (often named as lag). Range is one of the most important 
characteristics of the semi-variogram, which is a point on the  h  axis where  γ(h)  reaches its 
maximum, or rather for sample data where  γ(h)  reaches approximately 95% of the sill - 
which is the maximum level of  γ(h)  (Curran 1988). 

In the current research, since target classes are vegetation habitats with repetitive 
patterns, their semi-variograms are rather periodical, but anisotropic. The visualization of the 
semi-variogram graphs help to identify approximately one period as the appropriate size for 
further texture investigations. Semi-variograms for 4 window sizes (10 × 10, 20 × 20, 30 × 30, 
40 × 40 m) have been compared for the image 2008 calculated on the PC1, choosing certain 
samples from the predefined target vegetation classes (Figure 2). Corresponding to the solar 
azimuth angle of the image acquisition of 2008, directional variograms have been computed 
along the direction of the supposed minimum continuity (126°) in order to describe variability 
and as well along the direction of maximum continuity (perpendicular to 126°, thus 36°).  
These analyses (Figure 3) proved that the use of around 20 m × 20 m (16 × 16 pixels for the 
1.25 m/pixel GSR) square-objects is reasonable as basis for the texture analysis. 
 

 

Figure 3. Directional semi-variograms (regarding the solar azimuth angle: 
126° of the image acquisition 2008) for different vegetation classes 
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This was supported by the findings of Tuominen − Pekkarinen (2005) who applied  
20 m × 20 m square-shaped windows, stating that this size would lead to near-optimal results 
regarding forest stand inventories based on the analysis of aerial photography. 
 
4.4 Statistical feature selection method 

In a recent study (Kollár et al. 2013) related to the present research project GLCM entropy 
(ENT), correlation (CORR) and standard deviation (STDEV) have been chosen from the 
texture measures based on literature references (Hall-Beyer 2007) and empirical observations 
by the comparison of feature value ranges of certain class-pairs. There, besides the all-
directional type, directional textures have been analyzed as well, applied to those angles 
which were the nearest to the solar azimuth angle of each image acquisition (Table 1). For 
2008 the use of the all-directional, for 2005 and 1999 the directional textures in the combined 
feature set (together with vegetation index) provided the best classification accuracies (Kollár 
et al. 2013). 

The current attempt aimed at a statistically based feature selection method for the analysis 
and the choice of the most appropriate textural features from a larger number of measures, 
which have been analysed as well in the study of Laliberte − Rango (2009) complemented 
with two other measures. The issue of feature selection has been a general problem in image 
analysis methods, more specifically in pattern recognition related applications in order to 
minimize the classification error (Peng 2005, Pereira et al. 2007, Laliberte et al. 2012, Silva et 
al. 2012). Besides aiming at higher classification accuracies, the application of feature 
selection methods has been related to the reduction of redundant information in order to speed 
up the classification approach by an optimal decrease in the evaluated features (Mahmoud et 
al. 2011, Bindel et al. 2011). Determination of the mathematical separability of classes has 
been a common procedure, where feature reduction is performed by checking how separable 
various spectral classes remain when reduced sets of features are applied (Richards − Jia 
2006). From the group of probabilistic measures the Bhattacharyya distance (B) is one of the 
most popular measures (Mahmoud et al. 2011): 
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which has been stated as a convenient equation for normal distributions, but not rejecting the 
complete group of non-Gaussian cases and also discussed for a family of gamma distributions 
(Fukunaga 1990).  However, the infinite nature of  B  concerning a range of a half-closed interval 
[0, ∞) makes its interpretation difficult. Therefore, a similar measure, but with a finite dynamic 
range has been introduced, called Jeffries-Matusita distance  (JM)  (Richards − Jia 2006). 

 )1(2 )( BeJM −−=  (3) 

Silva et al. (2012) have summarized that generally  JM  values above 1.8 are the indicators 
for a good separability, the distance value below 1.8 would mean the possibility of confusion 
in the classification process between classes.  

In our study 8–8 GLCM features (all-directional and directional) and 4–4 GLDV (gray 
level difference vector) statistics have been analyzed for the best separability measures, where 
GLDV is a sum of the diagonals of the GLCM and a measure of the absolute differences of 
neighbors (Laliberte − Rango 2009). Target classes have had a minimum of 20 grid samples 
for each year. The basis for the texture calculations was the first principal component layer. 
As mentioned before, GLCM can be directional (related to the solar azimuth angle of each 
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image) and non-directional (the average of the directional features) and here both have been 
applied. For d (distance), 1 has been chosen as default, calculated in the object-based image 
analysis software eCognition Developer 8.9. Besides textures, vegetation indices (Table 3) 
and two other spectral descriptors (average of PC1 and average of the Green band) have been 
added as well to the separability analysis. 

JM measures for image 2008 are shown in detail in Table 4 for the selected textures 
(each one of them is all directional, Table 5) next to one spectral characteristic.  Although, 
the separability value for GLCM Mean was only bigger than 1.8 for 2 class pairs, one of 
them (HP-SP) represents a unique case since those classes have not been separable by any 
other texture features. Besides this consideration, we can also take into account, that there 
might be class pairs which are not clearly separable and the step concerning the selection 
of target classes should be revised. Table 4 indicates an example where the class pairs SP-
WP and W-WP are not separable without confusion (white fields, where  JM  is under 
1.8). From the investigations regarding 2005, 1999 pairs of HP-WP and W-WP have been 
inseparable. 

Table 4. JM measures for vegetation class pairs, concerning the selected textural and 
spectral features 

  
HP-
SP 

HP-
W 

HP-
WP 

HP-
R 

SP-
W 

SP-
WP 

SP- 
R 

W-
WP 

W- 
R 

WP-
R 

Number of pairs 
where JM ≥ 1.8 

GLCM STDEV 0.0 1.9 1.6 1.8 2.0 1.7 1.8 0.5 2.0 2.0 6 

GLDV ENT 0.7 1.6 0.4 0.9 1.9 0.5 1.8 1.4 2.0 1.8 4 

GLCM CONT 0.5 1.6 0.4 1.0 1.8 0.7 1.9 1.3 1.9 1.8 4 

GLCM MEAN 1.9 1.4 0.4 2.0 0.4 1.0 1.0 0.4 1.1 1.4 2 

mNDVI 1.9 2.0 1.9 2.0 1.1 0.6 1.9 0.2 1.0 1.3 5 

 

Table 5. GLCM measures chosen after separability analysis 

Texture Measure Formula 
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−
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Pij  is the normalized gray-level value in the cell  i,j  of the matrix, N is the number of rows or columns,   
µi,j  are the mean of row  i  and column  j,  Vk  is the normalized gray-level difference vector, and  k = �i–j�. 



Kollár, Sz. et al. 
 

 

Acta Silv. Lign. Hung. 9, 2013 

128 

4.5 Semi-automated classification algorithm  

The complete image analysis with texture calculations was performed using the object-based 
image analysis software eCognition Developer 8.9. The applied supervised classification 
algorithm is based on a membership value based fuzzy class evaluation, where the 
membership values concerning one specific feature from the selected feature set are computed 
from the training grid cells. The fuzzy nature of the algorithm means that there are three 
potential classes in the evaluation for a certain object (here: grid cell), with the label of the 
best class, calculated from the membership value based class descriptions for the selected 
feature set (Trimble 2013). Semi-automated refers to the general nature of classification 
approaches as part of the digital image analysis techniques where pixels or grid cells are 
classified in an almost automatic manner. Although the part of training sample selection is 
still subjective, chosen by the analyst, the labeling of objects later on is based on the derived 
characteristics and chosen algorithms. 

In traditional supervised classifications, firstly training samples are chosen from a concrete 
image where, based on their characteristics (usually the statistical descriptions), the whole image 
can be classified into the groups of predefined classes. In case of aerial image time series 
regarding a certain test site and short time period, the following question arises: whether it is 
possible to classify different-year images based on the training samples from a given year. In the 
current study, training samples have been collected from the 2008 image and the derived class 
descriptions have been tested for the 1999 image, which has a different spectral, but due to the 
earlier resampling (regarding the 2008 image) the same geometric resolution. 
 
 
5 RESULTS AND DISCUSSION 
 
Due to the fact that the acquisition times of botanical and forest inventories did not overlap 
with the aerial images, reference data cannot be directly taken. Thus, just like for the training 
stage of the classification, samples for accuracy assessment were taken from the target classes 
at locations different from the training areas. Table 6 summarizes the overall accuracies and 
Kappa coefficient measures for the 9 classifications, regarding the 3 different feature sets 
applied to each year. 

Table 6. Accuracy assessment of the fuzzy classification results concerning different feature sets 

  Year 2008 (CIR) Year 2005 (RGB) Year 1999 (CIR) 
Features applied Overall acc. Kappa Overall acc. Kappa Overall acc. Kappa 
Mean of PC1, VI 0.78 0.72 0.50 0.35 0.60 0.47 
4 textures only 0.91 0.89 0.88 0.84 0.82 0.76 
4 textures, VI 0.96 0.94 0.90 0.87 0.84 0.79 
 

Accuracy measures have shown that the use of texture parameters leads to significant 
improvements in comparison to solely spectral bands based classifications, however, best 
classification results were reached with the application of a combined set of spectral 
(vegetation index) and textural descriptors. 

The following three maps in Figure 4 present the best classification results for the test 
site (2008, 2005, 1999). 

Classification results for the different images (2008, 2005, 1999) come from independent 
image analyses based on sample selection in each year. Nevertheless, after visual 
interpretation target vegetation classes regarding species composition remained nearly the 
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same between 1999 and 2008 for the most of the site, that’s why it was reasonable to analyse 
the classification algorithm based on the same class descriptions for the former year 1999. 

The identification of water bodies in image 1999 worked well with the application of the 
“transferred” algorithm applied originally to image 2008 (a combination of the use of 
vegetation index and brightness). Contrary to that the predefined vegetation classes could not 
be detected in the 1999 image. Because of temporal differences “stable” vegetation classes are 
changing (growth) as well and any change in the texture patterns is critical for the given 
(transferred) membership functions in the classification algorithm. In addition, the here-
applied classification scheme does not cover the complete test site (unclassified area covers 
more than 30% in case of image 2008 and more than 20% for images 2005, 1999) which leads 
to difficulties regarding class transferability for different years and sites, that’s why the 
reconsideration of target classes is vital. However, an extension of the classification scheme 
without primary ground reference information (field survey concerning the last image, 2008) 
isn’t straightforward either. Complementary classes could partly come from habitat maps (in 
the concrete example, Dunaremete, 2004: vegetation on edges and dams, other hardwood, 
arable land), from silvicultural inventory (domestic poplar-acacia) and from visual 
interpretation (bare soil mixed with grass, road, young stand, shadow). The application of the 
same supervised classification method described before, however, with additional samples, 
resulted in 87% overall accuracy and showed a significant decrease in the unclassified area. It 
has to be emphasized that although we have been concentrated on a classification scheme 
mainly based on species composition, one of the additional classes: domestic poplar-acacia 
has been classified into the same group as a certain hybrid poplar stand with the same age 
(referring to the silvicultural information), which leads to the consideration of forest stand 
classification based on age structure.  

 
Figure 4. Classification results based on the fuzzy (membership value based) classification,  
for three different years (2008, 2005, 1999) with the use of the combined (textural and 

spectral) feature set 
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Beyond these aspects, the lack of reliable ancillary information for the former years 
makes it difficult to conduct a detailed analysis with appropriate accuracy. Monitoring 
approaches often apply post-classification change detection, which is an essential tool for the 
evaluation of quantitative and qualitative changes in the observed (vegetation) classes. 
Nevertheless, this type of analysis requires high classification accuracies for each analysed 
year. We have seen that overall classification accuracy decreases significantly from 2008 to 
1999, however, for each scene it was higher than 80%. Considering the accuracy calculation 
procedure it is vital, that in the earlier-mentioned measures (Table 6) misclassification of the 
background (expected as unclassified area) has not been involved. Experimental accuracy 
calculations complemented with background reference samples, only applied to the 2008 
image, have resulted in 9% decline (from 96% to 87%) regarding the overall accuracy and 
0.10 decrease (from 0.94 to 0.84) concerning the Kappa index. These values emphasize the 
significance of more detailed accuracy assessment and the further improvement of 
classification results, before the application of reasonable change detection methods. 
 
 
6 CONCLUSIONS AND FUTURE WORK 
 
Generally speaking, aerial imagery based semi-automatic image analysis aids vegetation 
monitoring approaches, helps to understand the ecological structures (vegetation patches) in a 
faster manner and has the potential to analyse processes (temporal changes) and hereby, 
supports the work of botanical and silvicultural surveyors with habitat maps.  

Based on the findings of the current study, the combined set of spectral (vegetation index) 
and textural (derived from GLCM/GLDV) features is suggested to be analysed and further 
involved in image classification algorithms for the mapping of riparian vegetation habitats. 
Based on the accuracy assessment the combination of spectral and textural features provided 
the best classification results in comparison to the sole use of spectral or textural descriptors. 
During the analysis of textural and spectral descriptors (features) the utilization of a statistical 
feature selection method (e.g. Jeffries-Matusita measure) has been proved to be essential in 
order to find the best fitting descriptors and to make reliable estimates of class signatures, 
especially in those cases where the selection of training pixels/objects is restricted due to the 
small size of the test site (Richards − Jia 2006). Regarding the remark (made in the previous 
section) concerning the similarities between different vegetation habitats (hybrid poplar and 
domestic poplar-acacia), it should be further investigated based on other test sites whether the 
age structure of forest stands significantly influences the vegetation habitat classification 
mainly based on species composition and if texture based image analysis could help to 
investigate forest stand ages. 

Uncertainty originates from various sources in ecosystem mapping, already in the 
training phase of the supervised classification, e.g. definition of classes, subjectivity of the 
field surveying based reference data and the mixed pixel (in our case: mixed object) problem 
(Rocchini et al. 2013). In case of differing acquisition times in image and reference data, a 
significant difficulty is often present, since the identification of a certain land cover type 
cannot be precise. Accuracy assessment can only take into account those objects for proof 
where the identification of a given class is reliable.  

The current study proved that the direct transfer of texture measures derived from one 
image transferred to a former one, and thereby the detection of the same or similar vegetation 
habitats in the former year cannot be worked out based on an incomplete classification 
scheme and the applied membership function based classification algorithm. For this reason 
and for the improvement of recent results, a complete cover of vegetation classes and the use 
of advanced classification algorithms have to be analysed in the further research. 
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